Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations
نویسندگان
چکیده
Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent-solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom-specific solvation parameter σ(i) (SASA). A procedure for the determination of values for the σ(i) (SASA) parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σ(i) (SASA) parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σ(g) (SASA) was obtained via partitioning of the atom-type σ(i) (SASA) distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces.
منابع مشابه
Solvation forces on biomolecular structures: A comparison of explicit solvent and Poisson-Boltzmann models
Continuum electrostatics methods have become increasingly popular due to their ability to provide approximate descriptions of solvation energies and forces without expensive sampling required by explicit solvent models. In particular, the Poisson-Boltzmann equation (PBE) provides electrostatic potentials, solvation energies, and forces by modeling the solvent as a featureless, dielectric materi...
متن کاملImplementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method.
A fast stable finite difference Poisson-Boltzmann (FDPB) model for implicit solvation in molecular dynamics simulations was developed using the smooth permittivity FDPB method implemented in the OpenEye ZAP libraries. This was interfaced with two widely used molecular dynamics packages, AMBER and CHARMM. Using the CHARMM-ZAP software combination, the implicit solvent model was tested on eight p...
متن کاملMolecular mechanics and dynamics of biomolecules using a solvent continuum model
An easy implementation of molecular mechanics and molecular dynamics simulation using a continuum solvent model is presented that is particularly suitable for biomolecular simulations. The computation of solvation forces is made using the linear Poisson-Boltzmann equation (polar contribution) and the solvent-accessible surface area approach (nonpolar contribution). The feasibility of the method...
متن کاملExplicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules
An explicit ion, implicit water solvent model for molecular dynamics was developed and tested with DNA and RNA simulations. The implicit water model uses the finite difference Poisson (FDP) model with the smooth permittivity method implemented in the OpenEye ZAP libraries. Explicit counter-ions, co-ions, and nucleic acid were treated with a Langevin dynamics molecular dynamics algorithm. Ion el...
متن کاملSHORT COMMUNICATION Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models
The treatment of hydration effects in protein dynamics simulations varies in model complexity and spans the range from the computationally intensive microscopic evaluation to simple dielectric screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy differencebetween two loop conformations in acetylcholinesterase....
متن کامل